EOS Studio Documentation

Phil Li

Nov 19, 2019

INTRODUCTION

1 Table of Contents 3
1.1 Getting Started L e e e e e e e e e e e 3
1.2 EOSIO Fundamentals e e e e e 5
1.3 OVEIVIEW . . . o o i i e e e e e e e 8
1.4 Project EQItOr o o e e e e e e e e e e 9
1.5 Contract InSPector o i e e e e e e e e e e e e e e 12
1.6 Account VIEWET o i i e e e e e e e e e e e 15
1.7 Network Manager e 15
1.8 BottomBar e e e e e e 17
1.9 e0SiOtOKeN e 17
1.10 EOSIO.CDT o e e e e e e e e e e e e e e e 18
1.11 Indicesand tables @ @ e e e e 21
Index 23

EOS Studio Documentation

B Current Project
Ed eosio.token

+ »

v eosio.token

&

v include

v eosio.token

eosio {

void token::create(

b.token.hpp

» ricard 7-4

v src
eosio.token.cpp
CMakelists.tx
README.md
eosio.token.abi

eosio.token.wasm

EOS Studio | Project

@ Accoun etwork
Build Contract Successful oken @= eosio.token O) Local
) Contract eosio. token is built.
eosio.token.cpp

oken/e

issuer,
maximum_supply)

(_self);

auto sym

maximum_supply.symbol;

(sym.is_valid(), "invalid symbol name");
(maximum_supply.is_valid(), "invalid supply");

(maximum_supply.amount

0, "max-supply must be positive");

stats statstable(_self, sym.code().raw());

auto existing
(existing

statstable.emplace(_self, [&](auto

s.supply.symbol
s.max_supply
s.issuer

statstable.find(sym.code().raw());
statstable.end(),

"token with symbol already exists");

s) {
maximum_supply.symbol;
maximum_supply;

issuer;
s
}

void token::issue(to, quantity, memo)
auto sym
(sym.is_valid(), "

(memo.size() 256

quantity.symbol;
nvalid symbol name");
, "memo has more than 256 bytes");

eosio-cpp -abigen -I include -R ricardian -contract eosio.token -o eosio.token
.wasm src/eosio.token.cpp
Warning, empty ricardian clause file

#» | © No Scatter

EOS Studio (https://www.eosstudio.io) is a graphical IDE for EOSIO dApp development. It was first launched in
Febuary 2019 and quickly became the most popular tool for EOSIO, attracting thousands of EOSIO developers world-
wide. At present, EOS Studio comes in two versions: a deskfop version that supports Mac OS, Windows and Linux
operating systems, as well as a web version that allows dApp development in a browser.

By integrating various tools required for EOSIO in a unified application, EOS Studio aims to provide a powerful
and easy-to-use environment for dApp development. With EOS Studio, developers can complete the entire dApp
development process in a single application. The key features of EOS Studio include

e C++ code editor with EOSIO syntax highlighting
¢ Built-in EOSIO.CDT and Cloud CDT

e Interactive Contract Inspector

 Version manager for EOSIO software

This documentation will introduce how to use EOS Studio for dapp development, explain the functions of each module
of EOS Studio, and also present some high-quality EOSIO smart contracts.

INTRODUCTION 1

https://www.eosstudio.io

EOS Studio Documentation

2 INTRODUCTION

CHAPTER
ONE

TABLE OF CONTENTS

1.1 Getting Started

EOS Studio is available in two versions. Developers are welcome to choose either one that better fits their purpose in
development.

* EOS Studio Desktop is a stand-alone desktop appliction that supports Mac OS, Windows and Linux operating
systems. It will also help you install and manage other tools required in the development, including EOSIO and
EOSIO.CDT.

* EOS Studio Web is a complete IDE that runs entirely in the browser. Developers can open a link and start dApp
development immediately without any pre-installation. Meanwhile, the Cloud CDT and cloud-based network
ensure that EOS Studio Web can provide complete dApp development capabilities.

In the following sections, we will demonstrate how to use both versions to create, build, deploy, and execute a smart
contract. You will be able to learn their difference and choose the appropriate one for your purposes.

1.1.1 EOS Studio Desktop

EOS Studio Desktop is a stand-alone desktop appliction, supporting Mac OS, Windows and Linux.

Download

You can download the installation package from the following links:
e Mac OS: https://download.eosstudio.io/mac
* Windows: https://download.eosstudio.io/win

 Linux: https://download.eosstudio.io/linux

Set up the environment
When you launch EOS Studio for the first time, there will be a welcome screen to help you set up the tools required
for EOSIO dApp development. That includes:

* EOSIO is the main software to run a EOSIO-based blockchain. It includes

— nodeos: the core executable that runs the EOSIO blockchain for block production and providing API
endpoints. You need to start one for local development;

— cleos: acommand line tool to query the EOSIO blockchain;

— keosd: a commane line wallet to manage keypairs and sign transactions;

https://github.com/EOSIO/eos
https://github.com/EOSIO/eosio.cdt
https://download.eosstudio.io/mac
https://download.eosstudio.io/win
https://download.eosstudio.io/linux
https://github.com/EOSIO/eos

EOS Studio Documentation

e EOSIO.CDT which stands for Contract Development Toolkit is used to compile C++ source codes to We-
bAssembly, a binary format EOSIO uses to run smart contracts.

EOS Studio Desktop uses Docker to install and run the above tools. With dockerized EOSIO and EOSIO.CDT, it’s
easier to work accross differenct operating systems. If you don’t have Docker yet, the welcome page will guide you
to install it.

In EOS Studio, cleos and keosd are not necessary.

Note: [Windows] There are two types of Docker: Docker Desktop (for Window 10 Pro only) and Docker Toolbox
(for all the others). Be sure to know which type of Docker your are using. EOS Studio works better with Docker
Desktop, but it has some compatible issues with Docker Toolbox. In that case, we recommend to use Cloud CDT and
Cloud-hosted Network.

Note: [Linux] After install docker, you also need to allow non-privileged users to run Docker commands. See
instructions here.

After Docker is installed and launched, the welcome page will further assist you to download docker images for
EOSIO (eostudio/eos) and EOSIO.CDT (eostudio/eosio.cdt). Both of them have many versions, but in most cases you
only need to install the latest. If you have previous projects that only work with older EOSIO or EOSIO.CDT, you can
download multiple versions and EOS Studio will help you to manage them.

Warning: Do not use the docker image on mainnet or as a block producer. They are made for development
purpose only.

Create a new project
Once you finish the installations, EOS Studio will go to the page of your project list. It is empty now, so let’s click the
Create button and create a new project.

The new project will be initilized with some basic codes for a smart contract. You can now press the :fa:‘gavel
hammer button in the foolbar to build the project. This will run the EOSIO.CDT docker image to compile the contract
and export a .wasm file and an . abi file.

* The wasm file is a WebAssembly binary that will run on the EOSIO blockchain

* The abi file is a json object that defines the contract actions and data tables with type information of action
parameters and table rows.

Start a local network

Before going forward, you need to start a local network. Switch to the Network Page where you can see all installed
EOISO softwares. Click the Run button to start a network. EOS Studio will

Create an account

4 Chapter 1. Table of Contents

https://github.com/EOSIO/eosio.cdt
https://developers.eos.io/eosio-home/docs#section-c-wasm-virtual-machine
https://developers.eos.io/eosio-home/docs#section-c-wasm-virtual-machine
https://www.docker.com
https://www.docker.com/products/docker-desktop
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/install/linux/linux-postinstall/
https://hub.docker.com/r/eostudio/eos
https://hub.docker.com/r/eostudio/eosio.cdt

EOS Studio Documentation

Deploy the contract

Warning: Be careful that do not deploy to eosio account, unless you know what you are doing.

Execute the contract action

1.1.2 EOS Studio Web

EOS Studio Web is available at https://app.eosstudio.io

Log in with GitHub

You can look at other’s projects. To create your own project, you need to login first.

Create a new project

press the button and create the project

Cloud CDT

use cdt to build the project, generating . wasm and . ab1i files

Cloud-hosted Network

Create an account

deploy the contract to your account

Run your first smart contract
In addition, many blockchain teams are sharing their open source smart contracts on EOS Studio Web to help new
users get started.
The main featurs of EOS Studio Web include:
* An online EOSIO code editor that supports syntax highlight, auto-complete and inline notification of build errors

* A cloud-based EOSIO.CDT smart contract compiler with the option to choose versions from v1.3 to v1.6

1.2 EOSIO Fundamentals

This chapter will introduce some basic concepts about EOSIO or blockchain based applications.

1.2. EOSIO Fundamentals 5

https://app.eosstudio.io

EOS Studio Documentation

1.2.1 Accounts

Blockchains like Bitcoin or Ethereum use addresses to represent individuals in transactions. Tokens are transfered
from one address to another, and each address has its own token balance. However, EOSIO-based blockchain use
accounts as the basic unit to store tokens and act as individuals in blockchain transactions.

Account Name

An EOSIO account can have a human readable name so it will be easy to remember. The account name is a string of
max length 12 consists of small letters a-z, digits 1-5 and dot.

Create an Account

A new EOSIO account needs to be created by another existing account. Creating an account will require some EOS
tokens to purchase the resources needed to store the account’s basic information, such as its own name and token
balance.

Permissions

A special feature EOSIO offers is that an account can process multiple levels of permissions, each of which has
unequal authorities to approve different sets of transactions. Such design can provide greater security for EOSIO
blockchains because users can set up and use a low-privilege permission in daily transactions. Losing this permission
wouldn’t cause too much damage because it can only perform limited transactions, and users can use a high-privilege
permission to recover the lost one.

1.2.2 Resources

The EOSIO blockchain defines three types of resources to compensate the usage of the network:
* CPU for computation time
* NET for network bandwidth
* RAM for data storage

CPU - Computation time

Any transaction posted to the blockchain network, either a token transfer or an execution of smart contract actions,
needs to consume some CPU time to be properly processed and packed into blocks. The total amount of CPU time is
limited by the harware, so a certain amount of EOS needs to be staked in exchange for CPU usage rights. The network
will prorate the CPU time that each account can use based on the total amount of CPUs collateralized on all accounts.
This time represents the total CPU length that can be used in 24 hours.

Staked EOS in exchange for CPU can be refunded if some computation time will not be used in the future.

so that transactions tenically free. It takes 72 hours.

NET — Network bandwidth

NET’s distribution mechanism is the same as the CPU, but also through the mortgage method. To allocate the use of
network bandwidth.

6 Chapter 1. Table of Contents

EOS Studio Documentation

RAM - Memory usage

The total amount of storage space on the chain is limited, so storing data requires buying RAM. RAM needs to be
purchased and the price is automatically adjusted by the bancor algorithm. The more people you buy, the higher the
RAM price, and vice versa.

REX

If an account need to use a large amount of CPU or NET for a short period of time, it needs to stake a huge amount of
EOS token.

1.2.3 Decentralized Application

EOSIO blockchain use account system to

Kickoff

You are three easy steps away from being a blockchain developer:
1. EOS Studio IDE and EOS account preparation
* Launch EOS Studio IDE Web: https://app.cosstudio.io
* Login into Studio using Github account
* Create an EOS account in Cloud network
2. Backend preparation
* Create a project
* Build
* Deploy
3. Frontend preparation (TODO add a simple test page with EOSJS API call)
* Launch test page
* Fill the account
* Click ‘Hi’ button
That’s it, that’s all, you are a blockchain developer now.

Talk is cheap. Show me the code.

Backend (Smart Contract)

* using C++
 Header file (hpp) and source file (cpp)
hpp:
* [[eosio::contract]] syntax
» Constructor and member initializer lists (https://en.cppreference.com/w/cpp/language/initializer_list)

e Actions

1.2. EOSIO Fundamentals 7

https://app.eosstudio.io
https://en.cppreference.com/w/cpp/language/initializer_list

EOS Studio Documentation

* Define table and table instance
cpp:
* function implementation
* require_auth (maybe ignore it)
» multi_index get a record (get)
» multi_index add a new record (emplace)
e multi_index replace an existing record (modify)

¢ C++ callback function

Frontend (TODO)

From ‘Hello world!” to ‘Hello xxx!” (xxx from blockchain) after clicking a button.
Offer a reset button.

* React setup

* EOSIJS setup

¢ onClick binding
EOSIJS API fetch

 update state

1.2.4 Smart Contract

Smart contracts are similar to backend servers but they are running on blockchains. Users will interact with smart
contracts through their APIs called actions, and the persisted data is stored in

Actions

operations

Tables

data

scope

1.3 Overview

EOS Studio comes with a simple and intuitive layout. The Ul is divided into four pages, switchable through the navbar
buttons.

* Project Editor is the main interface to display your EOSIO project and provide a EOSIO-tailored editor to code,
build and deploy your smart contracts.

» Contract Inspector is a convenient tool to debug smart contracts. It allows you to easily execute contract actions
and visualize the table data.

8 Chapter 1. Table of Contents

EOS Studio Documentation

* Account Viewer is a page to view account information and perform account related operations.

* Network Manager can help you switching between local network, different testnets, and EOS Mainnet, as well
as showing the information of the selected network. You can also connect to a custom network by API endpoint.
For local network, it also integrates the EOSIO Version Manager to install and manage multiple versions of the

EOSIO software.

At the bottom, the Botfom Bar will provide easy access to other tools that might be useful during the development.
Tools listed on the left side are usually needed in many places, so they are fixed in the Bottom Bar.

* The Keypair Manager can help you to create, import or export keypairs. Be aware that EOS Studio will not

encrypt the private keys and don’t use any of those in the mainnet.

* The Scatter button will show connection status to Scatter Desktop. EOS Studio will use Scatter to sign transac-

tions when you are working on the mainnet.

However, tools on the right will change according to the current active page and different pages have their own
available tools. The following sections will introduce them by pages respectively.

1.4 Project Editor

[] ® EOS Studio | Project

n Current Project . Cont
. B)
eosio.token eosio.token

eosio.token.cpp

v include eosio {

v eosio.token . 5
void token::create(issuer,

eosio.token.hpp max imum_supply)

ricardian {
¢ (_self);
src
auto sym = maximum_supply.symbol;
(sym.is_valid(), "invalid symbol name");
(maximum_supply.is_valid(), "invalid supply");
(maximum_supply.amount

eosio.token.cpp
CMakelLi Kt
README.md
eos ken.abi stats statstable(_self, sym.code().raw());
auto existing statstable.find(sym.code().raw());
(existing

eosio.token.wasm

s) A{
maximum_supply.symbol;
maximum_supply;
issuer;

statstable.emplace(_self, [&](auto
s.supply.symbol
s.max_supply
s.issuer
s
}

quantity,

void token::issue(to,
{

auto sym = quantity.symbol;
(sym.is_valid(), "invalid symbol name");
(memo.size()

memo)

S .
@ eosio

0, "max-supply must be positive");

statstable.end(), "token with symbol already exists");

"memo has more than 256 bytes");

eosio-cpp -abigen -I include -R ricardian -contract eosio.token -o eosio.token

.wasm src/eosio.token.cpp
Warning, empty ricardian clause file

» O NoScatter

1.4.1 Main Components

A CDTv

1.4. Project Editor

EOS Studio Documentation

Code Editor

eosio.token.cpp eosio.token.hpp

<eosio.token/eosio.token.hpp>
eosio {

void token::create(issuer,
maximum_supply)
{

(_self);

auto sym = maximum_supply.symbol;
(sym.is_valid(), "invalid symbol name");
(maximum_supply.is_valid(), "invalid supply");
(maximum_supply.amount > 0, "max-supply must be positive");

stats statstable(_self, sym.code().raw());
auto existing statstable.find(sym.code().raw());
(existing statstable.end(), "token with symbol already exists");

statstable.emplace(_self, [&](auto& s) {
s.supply.symbol maximum_supply.symbol;
s.max_supply maximum_supply;
s.issuer issuer;

})s;

void token::issue(to, quantity,
{
auto sym = quantity.symbol;
(sym.is_valid(), "invalid symbol name");
(memo.size() 256, "memo has more than 256 bytes");

The code editor has integrated some of the most practical tools for contract development. For example, it supports
highlight and autocompletes for EOSIO-specific syntax.

The code editor will render markdown files.

The README . md file will serve as the main page for a project.

Toolbar

+ N & & B

In the toolbar menu at the top left, there are some handy buttons that help you easily do common operations such as
* New Contract:
* Build: use EOSIO.CDT to compile smart contract
* Deploy: deploy the wasm and ab1i files to a specific account

* Test (only for desktop): run test cases; will initialize the test framework when the button is pressed for the first
time

* Project Settings: open the project settings page

10 Chapter 1. Table of Contents

EOS Studio Documentation

File Tree

v eosio.token
v include
v eosio.token
eosio.token.hpp

» ricardian

NSl
eosio.token.cpp

CMakelLists.txt
README.md
eosio.token.abi

eosio.token.wasm

In the file tree, you can xxx the project files.

Terminal

eosio-cpp -abigen -I include -R ricardian -contract eosio.token -o eosio.token
.wasm src/eosio.token.cpp
Warning, empty ricardian clause file

The terminal is mainly used to display EOSIO.CDT outputs and test outputs.

1.4.2 Types of Projects

Local Project (only for desktop)

A local project is saved on your disk.

Remote Project

A remote project is saved on EOS Studio’s cloud service. You can use both EOS Studio Desktop and EOS Studio Web
to access a remote project.

Others’ Shared Project

Open projects shared by others

Code editor

1.4.3 Project Settings

EOS Studio provides a Project Settings page to easily view and modify the .eosproj file, accessible by clicking the
cog button in the toolbar menu. The first item defines the main file for the project and the compile process will start
from this file. The second contract name item corresponds to the —contract attribute for CDT command line and is

1.4. Project Editor 11

EOS Studio Documentation

also required for compilation. The following items are optional and usually used for some advanced configuration in
compilation. You can refer the CDT command line documentation to learn how to use them.

In the below Deployment Settings, you can specify the account to which you want to deploy your smart contract.
EOS Studio supports local, Kylin and Jungle testnets, and EOSIO mainnet, so you can specify them separately. For
example, if we enter newcontract in the local config line, you will see the name also appears next to the deploy button
in the toolbar. Now if we click the button, EOS Studio will deploy the latest compiled codes to the newcontract
account.

1.5 Contract Inspector

[JoX J EOS Studio | Contract - eosio.token

p a Contract l
B o B L o =
eosio.token eosio.token @ eosio.token

eosio.token

c
foyissue v P O ©® |@Bstat~ C QO ®

~ Parameters © command Query

T0 SCOPE LOWER_BOUND

&% eosio.token EOS

QUANTITY
Data Table
& 1000.0000 E0S

SUPPLY MAX_SUPPLY ISSUER
MEMO =

1000.0000 EOS 1000000.0000 EOS eosio.token
v Authorization eosio.token@active

ACTOR

°
-
PERMISSION

Vs

D Ricardian

v Result Success

» O NosScatter

The Contract Page provides the necessary tools to inspect and debug smart contracts. In order to view multiple
contracts at the same time, EOS Studio uses tabs to support for opening multiple contracts. You can click on the tab to
quickly switch the contract you want to view. At the same time, the commonly used contract Account can be starred.

Just below the tabs, there is an address bar where lets you enter the contract account name. EOS Studio will automat-
ically read the abi file in the account to check the contract based on the contract account you entered.

The EOS Studio Contract Inspector has two parts:
1) a panel to execute actions on the left, and
2) apanel to query table data on the right.
In the dropdown menus at the top left for each panel, you can easily view all the actions and all the tables respectively.

If a smart contract is found in the account, EOS Studio will parse the abi file to visualize its actions and tables.

12 Chapter 1. Table of Contents

EOS Studio Documentation

1.5.1 Actions

Actions are shown on the right. You can switch the action you want to call through the dropdown menu.

Form for Input Parameter

A form for inputs will be generated from the abi to make it easier to enter parameters.

The input of the action contains many types, and EOS Studio will process the input parameters according to the type:
e For type of uint64_t,uint32_t,
* For type of permission,

You can view the raw transaction command by clicking the View Command button. It will tell you what command,
including the authorization set below, EOS Studio is going to execute when you press the Run button. It will show you
both the cleos command and the eos js script.

Authorization

You can change the actor and permission used to sign the transaction. By default, EOS Studio will use
{account }@active which account is the current selected account.

EOS Studio doesn’t support multisig yet.
Ricardian
Result

The result after calling the contract will be displayed here. If the result is, you will see the transaction hash, click to
see the complete transaction details.

1.5. Contract Inspector 13

EOS Studio Documentation

[@ EOS Studio | Contract - eosio.token

Transaction Details

Transaction ID: 594058a6dchdad384c8de14ef28631b6ab1014e2c278e830514346bd125a9879

"block_num" :

“"account_ram_deltas" :
B
“account" :
"delta” :
}
1

" g

"account" : "

"author
o{
“actor” :

"permission

"quantity" :

If the transaction fails, you can see the error message.

Execution History and Bookmarks

When we are debugging a smart contract, we often need to call the same actions repeatedly, and constantly refresh
the table to view the most recent data. Most HTTP API clients will store call history and have bookmarks to save
common-used parameters. EOS Studio has these features too. Within the clock icon buttons on the top right for each
panel, you can see the histories for action executions and table queries. They would be convenient if you need to check
past execution results, or simply want to re-run with the same previous parameters.

EOS Studio can also save frequently used parameters to bookmarks. For example, if I want to issue 10 EOS to myself
repeatedly, I can save it so I don’t need to enter them again. Go to the heart icon and select add to bookmarks, you
will see the contract action, the authorizer, and parameters to execution with. Just enter a name and save it, and you
can access it in bookmarks anytime in the future.

The record of the calling contract (including parameters and results) will be saved in the history for easy query. In
addition, you can add common used parameters to bookmarks.

1.5.2 Tables

Tables are shown on the right. You can switch the table you want to view through the dropdown menu.

14 Chapter 1. Table of Contents

EOS Studio Documentation

1.6 Account Viewer

The Account Page help you to check basic account information as well as perform some account operations. Similar
to the Contract Page, the Account Page is also organized using tabs to allow multiple accounts being open at the same
time. You will also using the address bar below the tabs to enter the account name. EOS Studio will read the account
information and display it in the page below.

The Contract and Account pages share the same starred account list. You can also use the star to mark the commonly
used account.

1.6.1 Basic Information

Display basic user information, including token balance, resources (CPU/NET/RAM), and permission keys.

When you are using a local network and the balance is always zero even though you have issued or transfered some
tokens to the account, that is probably because you didn’t setup the core symbol for the network. See here for instruc-
tions.

1.6.2 Transaction History

You can see the transaction history below the basic information.

1.6.3 Create a New Account

To create a new account, click the xxx and enter the account name. You also need to select a public key from the
Keypair Manager to use as owner and active keys. If there is no key yet, you need to open the Keypair Manager
and create one first. EOS Studio will check whether the account name has been used or not. Once a new account is
created, it will be starred automatically.

If you want to import a created account, just type the account name in the address bar and star the account. However,
you may not have the permission to operate this account. You can go to the Keypair Manager and import its private
keys.

1.6.4 Tools
EOS Studio provides a handy tool for some common account operations. These tools can be passed to the right of the
address bar button to access.

¢ Transfer: make a transfer of the core symbol tokens.

* Set the eosio.code permission - xxxx actions need eosio.code permission to run

* Faucet (testnets only) - click the button to claim some free tokens on a testnet

* Buy RAMs -buy 100 KB RAM:s.

1.7 Network Manager

Network are use to switch connected EOSIO network.

1.6. Account Viewer 15

EOS Studio Documentation

1.7.1 Local Network

(Only for EOS Studio Desktop)

EOS Studio | Contract - eosio.token

Network

@ Accoun
&= eosio.token Local

T . t
& eosio.token B eosio.token

EOSIO Manager

X Add EOSIO ~

VERSION

O Running v1.8.1

o v1.7.4

© Show Producer Logs

6.500
info
7.000
info
A=1000]
info
8.000
info
8.500
info
9.000
info
9.500

signed by eosio [trxs: 0, lib:
2019-07-30T11:52:47.003 nodeos
signed by eosio [trxs: 0, lib:
2019-07-30T11:52:47.507 nodeos
signed by eosio [trxs: 0, lib:
2019-07-30T11:52:48.006 nodeos
signed by eosio [trxs: 0, lib:
2019-07-30T11:52:48.504 nodeos
signed by eosio [trxs: 0, lib:
2019-07-30T11:52:49.006 nodeos
signed by eosio [trxs: 0, lib:
2019-07-30T11:52:49.504 nodeos
signed by eosio [trxs: 0, lib:

47801, confirmed: 0]

producer_plugin.cpp:

47802, confirmed: 0]

producer_plugin.cpp:

47803, confirmed: 0]

producer_plugin.cpp:

47804, confirmed: 0]

producer_plugin.cpp:

47805, confirmed: 0]

producer_plugin.cpp:

47806, confirmed: 0]

producer_plugin.cpp:

47807, confirmed: 0]

CREATED
July 11, 2019
June 19, 2019

produce_block
produce_block
produce_block
produce_block
produce_block

produce_block

Produced
Produced
Produced
Produced
Produced

Produced

block
block
block
block
block

block

0000babbefdb8e26. .
0000babcd2242e8d. .
0000babda056a074. .
0000babec480704f . .
0000babfb@bde2e6. . .

0000bac0d38d9002. . .

@ Open Bloks Local Explorer

. #47803 @ 2019-07-30T11:52:4
. #47804 @ 2019-07-30T11:52:4
. #47805 @ 2019-07-30T11:

. #47806 @ 2019-07-30T11:52:

#47807 @ 2019-07-30T11:52:4

#47808 @ 2019-07-30T11:52:4

» O NosScatter

EOSIO Version Manager

A table of installed EOSIO versions is listed here. If you want to install another one, click the install button and select
the version you want to install. You can also delete unwanted versions.

To start a local network, select the version you want to start and click the Run button. EOS Studio will start a docker
container and assemble the command to run nodeos. Once it is started, you can see the block producing logs in the
log terminal below.

Advanced Configuration

EOS Studio allow you to modify the paramters to run nodeos. Click the cog button to open advanced configuration
window. Here you will see a list of configurations, and please check nodeos documentation to understand how to
use them.

Logs of Block Production

You can toggle the button and hide . ..

16 Chapter 1. Table of Contents

EOS Studio Documentation

1.7.2 Cloud-hosted Network

This is a for-development testnet provided by dfuse.

1.7.3 Remote Networks

Other networks EOS Studio supports
* The EOSIO Mainnet
* Jungle 2.0 testnet
¢ CryptoKylin testnet
You can also connect to a custom networks

Basic Information

API Endpoints and Chian ID
Access to Block Explorers

Blocks

1.8 Bottom Bar

1.8.1 Keypair Manager

Keypair Manager used to manage keypairs.

1.8.2 Scatter

1.9 eosio.token

1.9.1 Introduction

The eosio.token contract defines the structures and actions that allow users to create, issue, and manage tokens on
EOSIO based blockchains. The core token EOS of the EOSIO mainnet are issued under the account eosio.token
using this smart contract.

* GitHub repo: https://github.com/EOSIO/eosio.contracts/tree/master/contracts/eosio.token

* EOS Studio: https://app.eosstudio.io/eosio/eosio.token

1.9.2 Types

There are a few types used in eosio.token as basic data structures. You can click the link in the action definitions
to see how the types are defined.

1.8. Bottom Bar 17

https://github.com/EOSIO/eosio.contracts/tree/master/contracts/eosio.token
https://app.eosstudio.io/eosio/eosio.token

EOS Studio Documentation

1.9.3 Smart Contract

Actions

class token

ACTION create (eosio::name issuer, eosio::asset maximum_supply)
Create a token in supply of maximum_supply with an issuer account. If successful, a new entry in
stat table for token symbol scope will be created. Transaction must be signed by the contract account
itself.

ACTION issue (eosio::name to, eosio::asset quantity, string memo)
Issue quant ity of tokens to account t o with an optional memo that accompanies the token issue trans-
action. The token needs to be created in advance. Transaction must be signed by the i ssuer.

ACTION transfer (eosio::name from, eosio::name to, €osio::asset quantity, string memo)
Transfer quant ity of tokens from account from to account t o, with an optional memo that accompa-
nies the transfer transaction. The token needs to be created in advance. Transaction must be signed by
account from.

ACTION open (eosio::name owner, eosio::symbol symbol, eosio::name ram_payer)
Allows ram_payer to create an account owner with zero balance for token symbol at the expense of
ram_payer. Transaction must be signed by account ram_payer.

ACTION close (eosio::name owner, eosio::symbol symbol)
This action is the opposite for open (), it closes the account owner for token symbol.

ACTION retire (eosio::asset quantity, string memo)
The opposite of create (). If all validations succeed, it debits the statstable.supply amount.

Tables

class token

TABLE stat

// scope 1is token symbol

eosio::asset supply; // supply.symbol is the primary key
eosio::asset max_supply;

eosio::name issuer;

TABLE accounts

// scope 1is owner
eosio::asset balance; // balance.symbol is the primary key

1.10 EOSIO.CDT

1.10.1 Header Files

18 Chapter 1. Table of Contents

EOS Studio Documentation

symbol.hpp

#include <eosio/symbol.hpp>

class eosio::symbol_code
Information about a token symbol, the symbol can be up to 7 characters long.

Example:

auto symbol_code = eosio::symbol_code ("EOS");

symbol_code (std::string_view str)
Construct a new symbol_code initialising value with str

symbol_code (uint64_t raw)
Construct a new symbol_code initialising value with raw

std::string to_string ()
Returns the symbol name as a string

uint64_t raw ()
Returns the raw uint 64_t value for the symbol

friend bool operator== (const symbol_code &a, const symbol_code &b)
friend bool operator!= (const symbol_code &a, const symbol_code &b)
friend bool operator< (const symbol_code &a, const symbol_code &b)

private uint64_t value
Stores the symbol code as a uint 64_t value

class eosio::symbol
Used to define a token’s symbol_code and precision (digits after the decimal).

Example:

auto symbol = eosio::asset ("10.0000 EOS") .symbol;
symbol.code(); // eosio::symbol_code ("EOS")
symbol.precision(); // 4

For example, 10.0000 EOS has symbol_code EOS and precision 4. A symbol can be written as
{precision}, {symbol} (in above example, 4, EOS).

symbol (eosio::symbol_code sc, vint8_t precision)
symbol (std::string_view sc, uint8_t precision)
eosio::symbol_code code ()

uint8_t precision ()

class eosio::extended symbol
A type of token is created by the token: : create () action. The same contract account cannot create two
types of tokens with the same symbol, but two different accounts deployed with the same eosio.token
contract can create separate tokens with identical symbol.

To prevent such vulnerability, a extended_symbol s could be equal but represent two different tokens.
int64_t amount =0

eosio::symbol symbol

1.10. EOSIO.CDT 19

EOS Studio Documentation

asset.hpp

#include <eosio/asset.hpp>

class eosio::asset
Used to specify some amount of tokens. It consists of an amount property and a symbol property. For
example, 10.0000 EOSisan asset with amount equals 10 « 1074 and symbol equals 4, EOS.

name.hpp

#include <eosio/name.hpp>

struct eosio::name
Mainly used to represent an EOSIO account name. Name string can only have small letters a-z, digits 1-5 or
dot, and max 12 characters. The name is saved as a uint 64_t.

name (std::string_view str)
Construct a new name initialising value with str

name (uint64_t raw)
Construct a new name initialising value with raw

std::string to_string ()
Returns the name as a string

uint64_t raw ()
Returns the raw uint 64_t value for the name

friend bool operator== (const name &a, const name &b)
friend bool operator!= (const name &a, const name &b)
friend bool operator< (const name &a, const name &b)

private uint64_t value
Stores the name as a uint 64_t value

time.hpp

#include <eosio/time.hpp>

class eosio::microseconds
Microseconds.

microseconds (int64_t count =0)

static microseconds maximum ()
Maximum Ox7ffffffffffEEE££1L

int64_t count ()
int64_t to_seconds ()

intb4_t count
The value used in serialization

inline microseconds eosio: :milliseconds (int64_t ms)

inline microseconds eosio: : seconds (intb4_t s)

20 Chapter 1. Table of Contents

EOS Studio Documentation

inline microseconds eosio: :minutes (intb64_t m)
inline microseconds eosio: :hours (int64_t h)
inline microseconds eosio: :days (int64_t d)

class eosio::time_point
High resolution time point in microseconds.

time_point (microseconds elapsed = microseconds())
microseconds &time_since_epoch ()
uint32_t sec_since_epoch ()

microseconds elapsed
The value used in serialization

class eosio::time_point_sec
A lower resolution time_point accurate only to seconds from 1970.

time_point_sec()
explicit time_point_sec (uint32_t seconds)
time_point_sec (const time_point &t)

time_point_sec maximum ()
Maximum time_point_sec (Oxffffffff)

time_point_sec min ()
Minimum time_point_sec (0)

uint32_t sec_since_epoch ()
Returns utc_seconds

uint32_t utc_seconds
The value used in serialization

class cosio::block_timestamp

1.11 Indices and tables

* genindex
* modindex

e search

1.11. Indices and tables

21

EOS Studio Documentation

22

Chapter 1. Table of Contents

E

eosio:
eosio:
eosio:
eosio:
eosio:

eosio:

eosio:
eosio:
eosio:

eosio:

eosio:

eosio:

eosio:

eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:
eosio:

eosio

eosio:

:asset (C++ class), 20
:block_timestamp (C++ class), 21
:days (C++ function), 21
:extended_symbol (C++ class), 19
:extended_symbol: :amount (C++ mem-
ber), 19
:extended_symbol: :symbol (C++ mem-
ber), 19

:hours (C++ function), 21
:microseconds (C++ class), 20

:microseconds: :_count (C++ member),
20

:microseconds: :count (C++ function),
20

:microseconds: :maximum (C++ func-
tion), 20

:microseconds: :microseconds (C++
function), 20

:microseconds: :to_seconds (C++

function), 20
:milliseconds (C++ function), 20
:minutes (C++ function), 20
:name (C++ struct), 20

:name: :name (C++ function), 20
:name: :operator!= (C++ function), 20
:name: :operator== (C++ function), 20
:name: :operator< (C++ function), 20
:name: : raw (C++ function), 20

:name: :to_string (C++ function), 20
:name: :value (C++ member), 20

: seconds (C++ function), 20
:symbol (C++ class), 19
:symbol: : code (C++ function), 19
:symbol: :precision (C++ function), 19
:symbol: :symbol (C++ function), 19
:symbol_code (C++ class), 19
:symbol_code: :operator!= (C++ func-
tion), 19

:symbol_code: :operator== (C++ func-
tion), 19

:symbol_code: :operator< (C++ func-

eosio:
eosio:

eosio:
eosio:
eosio:
eosio:
eosio:
eosio:

eosio:

eosio:
eosio:

eosio:
eosio:
eosio:

eosio:

T

tion), 19
:symbol_code:

function), 19

INDEX

:raw (C++ function), 19
:symbol_code: :symbol_code

(C++

:symbol_code::to_string (C++ func-

tion), 19
:symbol_code:

:value (C++ member), 19

:time_point (C++ class), 21
:time_point::elapsed (C++ member),

21

:time_point::sec_since_epoch (C++

function), 21

:time_point::time_point (C++ func-

tion), 21

:time_point::time_since_epoch

(C++ function), 21

:time_point_sec (C++ class), 21

:time_point_sec:

tion), 21

:time_point_sec:

21

:time_point_sec:

(C++ function), 21

:time_point_sec:

(C++ function), 21

:time_point_sec:

member), 21

token (C++ class), 18
:accounts (C++ member), 18
:close (C++ function), 18
:create (C++ function), 18
: issue (C++ function), 18

token:
token:
token:
token:
token:
token:
token:
token:

:maximum (C++ func-
:min (C++ function),
:sec_since_epoch
:time_point_sec

:utc_seconds (C++

:open (C++ function), 18
:retire (C++ function), 18
:stat (C++ member), 18
:transfer (C++ function), 18

23

	Table of Contents
	Getting Started
	EOSIO Fundamentals
	Overview
	Project Editor
	Contract Inspector
	Account Viewer
	Network Manager
	Bottom Bar
	eosio.token
	EOSIO.CDT
	Indices and tables

	Index

